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Almraet--The behavior of axisymmetric particles settling through a quiescent fluid in an inclined settler 
is studied. The particles undergo Jeffery orbits as they settle, causing their settling rate to vary continually. 
The orbit-averaged settling velocity is evaluated for any given particle in suspension, and the overall 
behavior is described by integrating over the probability density function for all particles. Expressions for 
the degree of classification in an inclined settler (i.e. the particle volume fraction and distribution in the 
overflow relative to the feed) as the volumetric overflow rate varies are given for: (i) the general case in 
terms of the distribution of particle size, aspect ratio and orbit constant; (ii) a monodisperse suspension; 
and (iii) a suspension of equal-diameter cylinders with a log-normal length distribution. Experiments were 
performed with two monodispersed suspensions of cylinders, and classification results are compared with 
theoretical predictions. The agreement is within the experimental error, except slightly more particles 
reached the settler overflow than predicted for the low aspect ratio suspension. 
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1. I N T R O D U C T I O N  

Extensive research has been conducted on separating and classifying spherical particles undergoing 
gravity-induced settling in an inclined settler (e.g. Hill et al. 1977; Acrivos & Herbolzheimer 1979; 
Leung & Probstein 1983; Davis et al. 1989), with much of the early work reviewed by Davis & 
Acrivos (1985). It is found, both from theory and experimental observation, that the sedimentation 
rate can be greatly increased in an inclined settler over that in a vertical vessel of similar dimensions. 
This same trend would be expected for nonspherical particles. Synthetic and naturally-occurring 
particles often deviate significantly from spherical particles, with examples including juice and 
paper fibers, clays, aggregates, iron filings, red blood cells and many microorganisms. However, 
the settling behavior for nonspherical particles in inclined vessels has not been quantified previously 
due to the complexity of the settling behavior of these particles. In particular, the flow fields present 
in an inclined settling channel cause the suspended particles to rotate or tumble as they settle, and 
so the sedimentation velocity of an individual particle varies with time. 

In a recent publication, Davis (1991) analyzed the settling behavior of axisymmetric particles in 
a simple shear flow. The particles were assumed to undergo Jeffery orbits (Jeffery 1922) as they 
settled. A variety of initial orientations was postulated in order to fix the orbit distributions. Davis 
found that the orbit-averaged particle settling velocities depend only weakly on the initial 
orientation assumed. In this paper, Davis' work has been extended to predict the settling behavior 
of suspensions made up of axisymmetric particles in a continuous-flow inclined settler. In 
particular, the rate of production of clarified fluid in the overflow is predicted, as are the overflow 
suspension concentration and particle distribution as functions of the imposed flow rate. These 
predictions are verified by experiments which were performed with two suspensions of cylindrical 
particles having different aspect ratios. 

2. T H E O R E T I C A L  B A C K G R O U N D  

2. I. Axisymmetric particle settling behavior 

We consider here suspensions which are sufficiently dilute that the motion of an individual 
particle is not distributed by neighboring particles. This requires that nP <~ 1, where n is the number 
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of particles per unit volume and l is their length, so that the volume sampled by a tumbling particle 
is well-separated from that of other particles. The analysis is also restricted to particles which are 
sufficiently small that inertia may be neglected, but not so small that rotary or translational 
Brownian motion is important. When placed in an otherwise undisturbed, simple shear flow, an 
axisymmetric particle will tumble in the periodic orbits first described by Jeffery (1922). The period 
of these orbits is 

T = 2n(re + r~l) 
, [l] 

where ~ is the shear rate and re is the effective aspect ratio of the particle. For a spheroid, the 
effective aspect ratio is the same as the true aspect ratio, r, defined as the ratio of the major to 
minor axis length. For other shapes, a relationship between r e and r must be determined by 
computation or experiment. If the particle is nonskew (such as a body of revolution possessing 
fore-and-aft symmetry), then an imposed body force does not affect the particle's rotation. 

The sedimentation velocity of nonspherical particle for creeping flow depends on its instan- 
taneous orientation and is linear in the gravity vector: 

U b . g  
- - - ,  [2] 

Us g 

where U s is the Stokes settling velocity of an equal-volume sphere, g is the gravity vector, g = [gl, 
and b is a dimensionless mobility tensor which depends on the particle shape. A single, 
non-Brownian particle undergoing Jeffery orbits in a shear flow while settling will not deviate from 
its original orbit unless it is distributed. Its instantaneous velocity will vary continually, but its 
orbit-averaged velocity will remain constant. Thus, an "orbit-averaged" mobility tensor was 
described (Davis 1991) by averaging the instantaneous mobility tensor over one full orbit. The 
theory of Koch & Shaqfeh (1990) suggests that the Jeffery orbits are changed very little by 
particle-particle interactions in shear flows of semidilute suspension of fibers. Nevertheless, the 
distribution of orbits will gradually shift away from the initial distributuion due to particle-particle 
interactions, as observed experimentally by Anczurowski et al. (1967). The orbit of any given 
particle depends not only on the particle shape and size but also on its instantaneous orientation 
in the shear field. This orientation manifests itself as a constant of integration that arises in the 
expressions for the orbit-averaged mobility tensor. Due to symmetry, only the diagonal com- 
ponents of the orbit-averaged mobility tensor are nonzero (Davis 1991): 

~u b± + rebll (bit - b±)re [3a] 
1 + re re(l + C2re2)l/2(1 + C2) 1/2 + 1 + C2re 2' 

~22 - rebx + bll (btl - b±) [3b] 
2 2 I/2 1 + r e re(l + C 2) + (1 + C2)1/2(1 + C re) 

and 

(bll - b±)[re(l + C2) 1/2 + (1 + C2re2) 1/2] 
~33 = b z  -~ [3c] (1 + C2r~)l/2[(1 + C2)1/2(1 + C2r~) 1/2 + re(l + C2)] ' 

where bll and b± are the mobilities of the particle parallel and perpendicular to its axis of symmetry, 
respectively, and are widely available in the literature (e.g. Oberbeck 1876; Batchelor 1970; 
Gluckman et al. 1972) and C is the constant of integration mentioned above, or the orbit constant, 
and can take on any value from 0 to ~ .  An orbit-averaged sedimentation velocity of the particle 
is then 

U - UsS" g _ Us(~llgt el + ~22g2e2 + ~33g3e3), [4] 
g g 

where e~, e 2 and e 3 are the three unit vectors for an orthogonal coordinate system fixed in the 
laboratory frame of reference. The coordinate system is oriented such that e~ is in the direction 
of the imposed shear flow and e2 is in the direction of its gradient. In general, ~;N ~ ~,2 ~ ~33, and 
so the orbit-averaged sedimentation velocity is not parallel to the gravity vector. 
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In practice, a suspension will contain an ensemble of sedimenting particles. As long as the 
suspension is dilute enough so that hydrodynamic interactions between neighboring particles do 
not significantly disturb their Jeffery orbits or sedimentation velocities, the above development will 
still hold. In general, the particles will have a distribution of orbits which may be described by a 
normalized probabilities density function of orbit constant, P(C). Additionally, the particles may 
not all be identical, resulting in a distribution of values for b~l, b.  and re. 

2.2. The inclined settler 

In an inclined settler, particles sediment onto the upward-facing plate of the settler under the 
influence of gravity. Particles simultaneously settle away from the downward-facing plate of the 
settler, leaving a thin dear-fluid layer which flows due to buoyancy to the top of the settler. Inclined 
settlers may be used to clarify fluid, to concentrate a suspension, or to classify particles by taking 
advantage of variations in settling velocities of the different particles in suspension. Regardless of 
the intended function of a given inclined settler, one parameter of importance is the clarification 
rate, S(U), defined as the volumetric rate of production of fluid devoid of particles of settling 
velocity U. Kinematic considerations dictate that the clarifications rate per unit area must be equal 
to the scalar product of the particle settling velocity and the vector normal to the surface available 
for settling: 

t ~  

s(u)  = JA u -  n dA, [5] 

where U is the sedimentation or relative velocity of the particles to the bulk flow velocity, n is the 
unit normal vector pointing outward towards the fluid from the upward facing surfaces of the 
settler and A is the area available for settling. For dilute suspensions of monodisperse, spherical 
particles, the vector U is uniquely described by the Stokes settling velocity of the particles. However, 
if there are distributions of particle shapes, sizes and/or orbit constants, a distribution of velocities 
arises. For the current study of particles with axial and fore-and-aft symmetry, the appropriate 
velocity to use in [5] is the orbit-averaged velocity, 1], as given by [4], provided that the particle 
holdup time in the settler is large compared to the period of rotation. The particle holdup time 
and rotation period depend on the particle properties and on the settler geometry and flow patterns. 
For low-aspect-ratio vessels, in which the clear-fluid layer is thin compared to the spacing between 
the inclined walls, the suspension flow is nearly quiescent except near the clear-fluid layer (Acrivos 
& Herbolzheimer 1979). Thus, particle rotation may not be significant in low-aspect-ratio vessels. 
On the other hand, high-aspect-ratio vessels, in which the clear-fluid layer thickness is comparable 
to the spacing between the inclined walls, exhibit strong parabolic flows in both the suspension and 
clear-fluid layers (Herbolzheimer & Acrivos 1981). Particle rotation will, therefore, be significant 
in these vessels. Since high-aspect-ratio vessels have both greater clarification rates (per settler 
volume) and stability (Davis et al. 1983), they are the focus of the theory and experiments presented 
in this paper. Quantitative estimates of the holdup time and rotation period are presented in the 
section on experiments. 

In the present work, we are interested in describing the performance of continuous inclined 
settlers with a distribution of particle sizes and shapes. Of particular interest is the ability of the 
settler to separate particles from fluid and also to separate slower-settling particles from 
faster-settling particles. The settler operation involves pressure-driven flow in which the feed 
suspension is introduced in the lower portion of the settler, partially clarified fluid containing 
slower-settling particles is removed through the overflow and concentrated suspension enriched in 
faster-settling particles is removed through the underflow. For polydisperse or nonspherical 
particles, there is a distribution of settling velocities and clarification rates. Then, a mass balance 
on particles of a given settling velocity about the overflow port yields: 

QoXoPo(U) = (Qo - -  S ( U ) ) X f P r ( U )  ao > S(I7), [6] 

where Qo is the volumetric overflow rate, X o and Xr are the mass concentrations of particles in the 
overflow and feed streams, respectively, and Po and Pr are the corresponding probability density 
functions. Each probability density function is defined such that P(U) dU is the fraction of particles 
by mass having settling velocities in the range I] ___ dl~/2. The above equation is valid, of course, 
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only if the overflow rate exceeds the clarification rate. Otherwise, the overflow will be devoid of 
particles of settling rate I~: 

Po(I~) = 0 Qo ~< S(I~). [7] 

Equation [6] can be integrated over all particle settling velocities to yield the total concentration 
of particles in the settler overflow, divided by that in the feed stream: 

Xo = Qo ~ ~ (Qo - S(U))Pr(U)H(Qo - S(I~)) dI~, [8] 
Xf J 

where H(Qo - S(U)) is the Heaviside unit step function, introduced to incorporate the restriction 
of [7] into the integrated form of [6]. It takes on a value of unity for positive values of the argument, 
and zero otherwise. 

Evaluation of [8] requires that determination of the clarification function, S(I~). Figure 1 is a 
schematic of a rectangular inclined settler showing the appropriate angles and dimensions. By 
geometric considerations, the angle between the average sedimentation velocity and the gravity 
vector is 

a =  t a n - ' ( -  uU---~) - O, [9] 

where 0 is the angle of inclination of the settler from the vertical. Also, 03 = 0 since g3 = 0 for the 
arrangement shown in figure 1. If the particle length is small compared to the spacing between the 
inclined walls, h, then the local flow on the particle length scale may be approximated as simple 
shear, and the particle tumbles in Jeffery orbits. From [4], 

U2 ~22g2 ~22 = ~ = -~-~, tan 0 [101 

and so [9] becomes 

= t a n - k  tan0 --0. [111 

Then, using [5] the clarification rate is the magnitude of the orbit-averaged particle settling velocity 
multipled by the projected area available for settling: 

S(U) = Ow[L sin(0 + a) + h cos(0 + ~)], [12] 

> Qo 

Qu 

Figure 1. Schematic drawing of  an inclined settler. Qf, Qu and Qo are the volumetric flow rates of the 
feed, underflow and overflow, respectively. The settler is inclined at an angle 0 relative to the vertical. A 

given particle settles with an orbit-averaged velocity U, at an angle a relative to gravity. 
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where L, h and w are the length, height and width of the rectangular settler, and 0 = IUI. Combining 
[4] and [12] then yields the desired result: 

S(U) = UsW~22L sin 0 +~llh cos 0]. [13] 

Typical vessels are long and narrow (L >> h), and so [13] indicates that the clarification rate 
increases with increasing angle from the vertical. In general, the desired angle is the largest one 
which allows the settled particles to still slide down the upward-facing wall of the settler so that 
they reach the underflow. 

Equation [8] may be integrated using [13] for a specified probability density function for the feed 
suspension, Pf(U). The next section deals with a general form of the integral, the special case of 
monodisperse axisymmetric particles and the special case of a suspension of cylinders of equal 
diameters but with a distribution of lengths. 

3. THEORETICAL RESULTS 

3.1. General suspensions of axisymmetric particles 
The orbit-averaged settling velocity of a given particle depends on its size, shape, density and 

orbit. In general, a suspension of particles will exhibit continuous distributions of sizes, shapes and 
orbits, whereas the particle densities are more likely to take on only discrete values corresponding 
to certain materials. Here, we consider only a single particle density, pp. The particle shape is 
described by its type (cylinder, spheroid etc.) and aspect ratio, r, and the particle oribit is described 
by its orbit constant, C. The particle size is described by a dimensionless radius, ¢ = as/ao, where 
as is the radius of a sphere having the same volume as the particle and a0 is a characteristic radius 
for the suspension. Then, a dimensionless overflow rate is defined as 

ao 
Q = UowL sin 0 '  [14] 

where the Stokes velocity of a sphere with radius a0 is 

2 a2(pp - -  p)g [15] 
U ° = 9  t~ ' 

with p and V being the fluid density and viscosity, respectively. The Stokes velocity of an 
equal-volume sphere for a given particle is then given by 

Us = ~2Uo. [161 

If the three parameters (r, ~, C) describing the particle distribution are distributed independently, 
then [8] may be written as 

Xo = ; :  f : f f (1-  ~ 2 ~ )pf(r )Pr( ~ )Pf( C)H( l - ~ 2 ~-~ ) dr d~ [17] 

In deriving [17], we have assumed the typical case of high-aspect-ratio vessels (L sin 0 ,> h cos 0). 
Also, Pf(U)dU = Pr(r)Pf(~)Pr(C)dr d~ dC represents the independent distributions of particle 
aspect ratio, size and orbit constant in the feed suspension. The probability functions are 
normalized such that 

;o~fo~fo~Pf(r)Pf(~)Pf(C)drd, dC=l. [18] 

For independent distributions, the integral over each parameter is also unity. 

3.2. Monodisperse suspensions of axisymmetric particles 
A monodisperse suspension (~ = 1, r = const) of axisymmetric particles settling in an inclined 

settler will exhibit variations in orbit-averaged sedimentation velocities due only to differences in 
the orbit constants of the individual particles. Davis (1991) calculated the ensemble-average 
mobility functions for a variety of orbit distribution functions, P(C). In the present work, we have 
evaluated the settling behavior for two of these distribution functions. The first corresponds to the 

UMF 19/~-F 
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case in which the particles are randomly oriented prior to the onset of shear (i.e. upon introduction 
to the settler) and follow orbits based on this initial orientation• This neglects the effect of any drift 
due to Brownian motion or particle-particle interactions, and is given by the Eisenschitz distribution 
(Eisenschitz 1932). Secondly, we consider the singular distribution proposed by Jeffery (1922), in 
which all the particles are aligned such that viscous dissipation is minimized. Experimental 
observations (Mason et al. 1956) have shown that in fact particles in a dilute suspension will tend 
to exhibit a distribution between the Eisenschitz distribution and the singular distribution, after a 
long time, presumably as a result of occasional particle-particle interactions modifying the oribt 
constants. Fortunately, the required ensemble-average mobility (~22 >, depends only weakly on the 
chosen orbit distribution for spheroids and cylinders of all aspect ratios (Davis 1991). 

For monodisperse suspensions, [17] reduces to 

Xo f o ~ ( ~ > p r ( C ) H ( ~ Z ~ E ) d C .  [19] Xf 

The Eisenschitz orbit distribution function is given by (Davis 1991): 

Pf(C) = mE(k), [20] 

where E(k) is the complete elliptic integral of the second kind (Abramowitz & Stegun 1965) and 

2Cre . k2 _ C 2 ( r  2 - 1) r e t> 1 [21a] 
m --  ~ ( 1  + C 2 ) ( l  + C 2 r 2 )  U2, 1 + C2r~ ' 

and 
2Cr e . k2_C2(1-r~) 

m = n ( l + C 2 r 2 ) ( l + C 2 )  '/2' I + C  2 ' re ~<1 [21b] 

Figures 2 and 3 illustrate the effect of the dimensionless volumetric overflow rate on the relative 
particle volume fraction in the overflow for various aspect ratios for prolate and oblate spheriods, 
and for cylindrical rods and discs, using the Eisenschitz distribution. The solid lines represent 
spheroids, the dashed are cylinders. At low overflow rates, only particle-free fluid enters the 
overflow and Xo/Xr = 0. As the overflow rate increases, particles begin to enter the overflow until, 
at very high rates, the overflow concentration approaches the feed concentration. For suspensions 
of elongated particles (r > 1, figure 2) or flattened particles (R < 1, figure 3), some particles begin 
to appear in the overflow at much lower overflow rates than for suspensions of particles with aspect 
ratios close to unity. This is expected due to the higher resistance or lower mobility of the elongated 
particles. The difference in behavior between cylinders and spheroids of equal geometric aspect 
ratios is only slight. 

Figures 4 and 5 illustrate the sensitivity of the assumed distribution of orbit constants on the 
volume fraction vs overflow rate profiles for prolate and oblate spheroids, respectively• The solid 
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Figure 2. Relative particle volume fraction in the overflow 
as a function of  the scaled dimensionless overflow rate for 
monodisperse suspensions of  prolate spheroids ( ) and 
cylinders ( - - - - ) ,  with different geometric aspect ratios. 
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Figure 3. Relative particle volume fraction in the overflow 
as a function of the scaled dimensionless overflow rate for 
monodisperse suspensions of oblate spheroids ( ) and 

discs ( . . . .  ), with different geometric aspect. 

] • , , 

0.8 

0.6 

0.4 

0.2 

0 . . . . .  

0.2 



A X I S Y M M E T R I C  P A R T I C L E  S E T T L I N G  B E H A V I O R  8 0 9  

l • • , I I • . • I , • , I , . , I , • • 

0.8 

0.6 
~100 10 2 

0.4 

0.2 

0 • ' ' I ' ' ' I ' ' • i • • • I • ' ' 

0 0.2 0.4 0.6 0.8 
Q/(I+Q) 

Figure 4. Relative particle volume fraction in the overflow 
as a function of  the scaled dimensionless overflow rate for 
monodisperse  suspensions of  prolate spheroids,  with an 
Eisenschitz distr ibution of  orbit  constants  ( ) and a 
singular distr ibution with particles aligned with their thin 
sides in the flow direction ( . . . .  ). Also shown are the 
overflow rates corresponding to the appearance of  the 
slowest-settling and fastest-settling particles in the suspen- 

sion (vertical lines). 
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Figure 5. Relative particle volume fraction in the overflow 
as a function of  the scaled dimensionless overflow rate for 
monodisperse  suspensions of  oblate spheroids, with an 
Eisenschitz distribution of  orbit  constants  ( ) and a 
singular distribution with particles algined with their thin 
sides in the flow direction ( . . . .  ). Also shown are the 
overflow rates corresponding to the appearance o f  the 
slowest-settling and fastest-settling particles in the suspen- 

sion (vertical lines). 

lines represent the Eisenschitz distribution and the dashed lines represent a singular distribution 
of all particles aligned to minimize viscous dissipation, as first proposed by Jeffery (1992). The 
effects of the assumed orbit constant distribution do not strongly influence particle sedimentation. 
This is not surprising since the settler performance depends only on the mobility perpendicular to 
the flow direction in the plane of shear, ~22, as can be seen from [17]. The Eisenschitz distribution 
for prolate spheroids and cylinders is skewed towards smaller orbit constants. Even particles of 
large orbit constants tend to spend the greatest portion of their orbits aligned in the flow direction 
so that ~22---~bi in any case. The singular distribution predicts the particle aligned with its primary 
axis out of the plane of shear, spinning steadily about the axis, so that ~22 = b± in any case. The 
singular distribution predicts the particle aligned with its primary axis out of the plane of shear, 
spinning steadily about the axis, so that ~22 = b± also. 

A similar effect holds for oblate spheroids and discs. The Eisenchitz distribution is now skewed 
towards larger orbit constants ( C ~ ) .  This corresponds to an unsteady orbit, with most of the 
orbit period spent with the thin side of the particle out of the plane of shear and aligned with the 
flow direction. The singular distribution leading to minimum viscous dissipation is also C = ~ .  For 
oblate spheroids, then ~22 --~ bll regardless of the assumed orbit constant distribution. 

Two particularly significant values of Q occur for any given monodisperse suspension with a 
distribution of orbit constants. One is the value of Q at which the slowest-settling particles just 
begin to enter the overflow. This corresponds to the point at which the curves just begin to rise 
above the horizontal axis in figure 4 and 5 (Xo/Xf>O). Using [3b], this limit is 
QI =~22 = (reb, + bEi)/( 1 + re) for r e < 1 (in which case the solvent-settling particles have C ~ ) ,  
or QI = ~22 = b,  for r~ > 1 (in which case the slowest-settling particles have C = 0). The second 
significant limit is that for which the fastest-settling particles first appear in the overflow. The limit 
correspond to Q2 = ~22 -~" b± for re < 1 (C = 0) or Q2 = ~22 = (r~b. + bll)/(1 + re) for r e > 1 (C--* oo). 
These limiting values of Q are indicated in figures 4 and 5 as vertical lines for the suspension 
exhibiting an Eisenschitz distribution of orbit constants. A greater disparity between the two limits 
exists for oblate spheroids (figure 5) because the particles that have small orbit constant have high 
settling mobility (~22-~bll for C ~ 0 ,  r e < 1), whereas the bulk of the particles of high orbit constants 
have lower settling mobility (~22-~b for C ~ ,  re~0). In contrast, prolate spheroids of all orbit 
constants spend most of their orbit periods aligned such that ~22~b. as r ~ .  

Since the orbit-averaged sedimentation velocities of particles in a monodisperse suspension vary 
with the orbit constant, the overflow will exhibit a different orbit distribution, in general, than the 
feed. In particular, the overflow will be enriched with the slower settling particles, which 
corresponds to large orbit constants for r/e < 1, and to small orbit constants for re > I. This would 



not be important in applications where the particles are the primary product but it may be of 
interest for suspensions or composites where controlled particle orientation is desired. The 
distribution in the settler overflow may be obtained by combining [6]-[8]: 

(Qo - S ( [ J ) ) H ( Q o  - S ( ~ ) ) P f ( U )  [22] 

P(C) 

which for a monodisperse suspension in a vessel with a high aspect ratio becomes 

Figure 6 shows an Eisenchitz initial distribution of  orbits for prolate spheroids with r = re = 10, 
together with the overflow distribution of orbits for this suspension with Q = 1. Note that the 
overflow distribution is slightly shifted toward smaller orbit constants, which corresponds to 
particles of lower sedimentation mobility, aligned more in the flow direction. A more pronounced 
effect is seen for oblate spheroids of r = r e = 0.1, as shown in figure 7. Again, the distributions are 
the Q = 1. Here, the orbit constants in the overflow are shifted towards higher values, correspond- 
ing to lower sedimentation rates for oblate spheroids. As discussed previously, the effect on the 
orbit constant on ~22 is more pronounced for oblate spheroids and discs than for prolate spheroids 
and cylinders. 

3.3. A distribution of cylinders 

We next consider the case of a suspension containing cylindrical rods of equal radius, a¢, but 
with a log-normal distribution of lengths, l. This distribution was chosen because it arises in fiber 
suspension when all particles come from the breakup of  fixed-diameter threads, and it may 
approximate suspensions of certain microogranisms of  various ages. The development for this 
distribution is simpler than the general case given by [17] because the particle size (as measured by 
as or ~) and aspect ratio are not independent. Instead, the radius of an equal-volume sphere is 

,3 .J/2 [ 2 4 ]  as= f i r )  ac, 

where the aspect ratio is defined as r = l/2a¢. If a0 (in the definition of ~, see [15] and [16]) is chosen 
as the radius of  a sphere having the same volume as a cylinder of aspect ratio r = ff, then [17] 
becomes 

X° ~ 1 r 2/'3 2/3 
. . . .  H 1 - P r ( l n  r ) P f ( C )  d C  d In r, [25] 
Xr - ~ \ 5 1  
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Figure 6. The distribution of orbit constants for 
monodisperse suspensions of prolate spheroids (r = 10) at 
the dimensionless overflow rate Q = 1.0 in the feed ( ) 

and in the overflow (- - ). 
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Figure 8. Relative particle volume fraction in the overflow 
as a function of  the scaled dimensionless overflow rate for 
equal-diameter cylinders with log-normal length distri- 
butions having different mean aspect ratios. For all curves, 

the standard deviation of  aspect ratios is tr = 5.0• 
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Figure 9. Relative particle volume fraction in the overflow 
as a function of  the scaled dimensionless overflow rate for 
equal-diameter cylinders having log-normal length distri- 
butions. The mean aspect ratio is 20 for all cylinders, and 

the standard deviation is varied. 

where ff is chosen as the mean aspect ratio of the log-normal feed distribution, which is given as 

1 exp - , [261 Pf(ln r) = x / ~  In a 

where In a is the standard deviation of In r. 
Figures 8 and 9 illustrate the trend of particle content on the overflow with increasing overflow 

rate for variations in the mean aspect ratio and in the breadth of the distribution, o. The Eisenschitz 
distribution is used for P(C). The results are qualitatively similar to those for monodisperse 
suspensions (figures 4 and 5). However, more of a spread occurs at low overflow rates. This spread 
is due to the appearance of very short cylinders in the overflow at low overflow rates. In figure 
8, the standard deviation is tr = 5.0 for all curves. In figure 9, the mean aspect ratio is ~r = 20 for 
all curves. 

Of additional interest is the distribution of aspect ratios for the particles reaching the settler 
overflow. In particular, the overflow stream will be enriched with the shorter particles and devoid 
of the longer particles at long overflow rates. For a distribution of cylinder lengths, [22] becomes 

[l 
I 1 -  (rX)2/3 ~ ] n [ l \ / ~ f , ]  -(~f)2/3~]ef(lny)ef(C)dCdlnp 
over all orbit constants to yield the distribution of aspect ratios in 

P°(lnr)P°(C)=f;~ fo~ 
This result may be integrated 
the overflow stream: 

Po(ln r ) =  f0~ [ 1 -(r ' )2/3 ~ - ~ I H [ I - ( r y / 3 ~ - ~ l P r ( C ) d C P r l n r  \rr/ \ r r ]  , 

f~ fo~[ \rtJ ~2J 1 , - ~  --a-, PeOn r)Pr(C) dC d In r 
[281 

where we note that Po(C) and Po(ln r) are independent distributions which yield unity when 
integrated over all values of their arrangements, and the mobility ~22 is a function of the aspect 
ratio r and the orbit cconstant (C). The average aspect ratio of particles in the overflow is then 
given by 

ro = exp In rPo(ln r) d In r. [29] 

Figure 10 shows that the predicted size distributions of cylinders in the feed and overflow streams 
for a log-normal feed distribution with fr and a = 2, using an inclined settler with a dimensionless 
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overflow rate of  Q = 1. As expected, the overflow distribution is shifted toward the small particles 
and is completely devoid of particles larger than a critical size (r = 13.2) which settle out of  
suspension before reaching the overflow. The mean particle aspect ratio in the overflow is shown 
in figure 11 as a function of the dimensionless overflow rate. At low overflow rates, only the shortest 
cylinders reach the overflow without settling; whereas at large overflow rates, all of  the particles 
reach the overflow and the average size asymptotes to that of  the feed distribution. Finally, we note 
that the underflow is enriched in the larger, faster-settling particles, as may be analyzed using mass 
balances about the entire settler. 

4. E X P E R I M E N T A L  S T U D Y  

4.1. Materials  and methods 

Cylindrical particles of  uniform size were suspended in a viscous fluid and passed through a 
rectangular settler with L = 60 cm, w = 3.5 cm and h = 2.5 cm. The particles were made by cutting 
nylon fishing line using a method similar to that described by Bibbo (1987); approximately 50 lines 
at a time were held tight in a Teflon tube and then cut into prescribed lengths. Two particle sizes 
were made from two different brands of  fishing line, one of aspect ratio r =6.25 
(l = 1 2 5 0 # m , d  = 200#m)  and the other r = 19.25 (l = 3 0 8 0 # m , d  = 160#m). By finding the 
composition of a mixture of  water and glycerol in which the particles are neutrally buoyant,  the 
densities of  the shorter and longer fibers were measured to be p p =  1.130 and 1.137g/cm 3, 
respectively. The suspending fluid was U C O N  Heat  Transfer Fluid 500, which has density 
p = 1.034 g/cm 3 and viscosity # = 1.10 g/cm-s at 25.8°C. The experiments were operated at room 
temperature without temperature control. The fluid temperature in the vessel was monitored and 
found to rise I -2°C over the course of  an experiment. However, the temperature at the time when 
samples were taken and analyzed was always in the range 25.8 _ 0.4°C, with the viscosity varying 
by <3°,4 from the reported value and the density varying <0 .1%.  Under these conditions, the 
particle Reynolds numbers (based on the diameter and settling velocity of  an equivolume sphere) 
are < 10 -3. 

Maximum particle volume fractions of  5 × 10 -4 and 5 x 10 -5 were maintained during steady- 
state operation for the particles of  aspect ratio 6.25 and 19.2, respectively, corresponding to 
nl 3 = 0.025 and 0.023. The angle of  inclination of the settler from vertical was set at 0 = 15 ° and 
0 = 18 ° for the shorter and longer particles, respectively. For larger angles, it was observed that 
the settled particles did not readily slide down the upward-facing surface of the channel. A constant 
overflow rate was controlled by connecting a Masterflex peristaltic tubing pump to the top of the 
settler. The pump sucked the suspension through the open bot tom of the settler from a reservoir, 
and then returned the overflow stream to the reservoir. The underflow stream was recycled to the 

1 . . . .  1 . . . .  ', . . . .  ', . . . .  ', . . . .  ', . . . .  I . . . .  I ' "  
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Figure 10. Probability distribution of cylinder aspect ratios 
in the feed ( ) as given by the Eisenschitz distribution 
and in the overflow ( . . . .  ) for Q = I. The feed is an 
equal-diameter cylindrical particle suspension have a log- 
normal length distribution with mean aspect ratio ?f = 5 and 

standard deviation a = 2. 
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Figure I 1. Mean aspect ratio in the overflow as a function 
of the scaled dimensionless overflow rate for the same 

particle suspension and conditions as in figure l O. 
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Figure 12. Relative volume fraction of  cylindrical particles in the overflow stream for aspect ratios of  
r = 6.25 ( A )  and r -- 19.25 (O); the theoretical curves shown are from ([19] and [20] for r = 6.25 ( . . . .  ), 

r = 19.2 ( ) and spheres ( . . . . .  ). 

reservoir by gravity. The overflow rate was varied between 20-80 ml/min. Under these conditions, 
laminar flow profiles were maintained within the settler. Samples were taken periodically from the 
reservoir and from the overflow stream. Particle volume fractions in the overflow feed were found 
by filtering a measured volume of  a sample and visually counting the number of  particles in the 
filter. Approximately 2-3 h were required for the concentrations to reach steady state, primarily 
due to the gradual accumulation of  particles on the upward-facing surface of the vessel. 

In order to measure the distribution of  particle orientations during the flow, a video tape was 
taken through a magnified lens. This was done for the particles with an aspect ratio of  6.25, since 
these particles are colored and were clearly visible on the video screen. Approximately 100 particle 
orientations were measured, and the distribution of  particle orientations was found. 

4.2. Results and discussion 

Figure 12 shows the dimensionless overflow concentration vs the dimensionless overflow rate for 
both sizes of  particles. The data points represent the average of  three measurements, and the error 
bars _ 1 standard deviation. The theoretical curves were calculated using [19] with the Eisenchitz 
orbit distribution for the feed suspension. Also shown in the plot is the theoretical curve for 

Figure 13. Section of a video frame showing cylindrical particle alignment (for r = 6.25) in the direction 
of shear flow; the dark line at the lower left corner of the photo is the lower wall of  the inclined vessel 

and represents the flow direction. 
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Figure 14. Cumulative distribution of  particle orientations for r = 6 .25;  the theoretical curve is from [30], 
and ~z is defined from 0-180 °, with 90 ° being the direction of flow. 

monodisperse spherical particles, which is nearly the same as that for cylindrical particles with an 
aspect ratio of unity. As the overflow rate is increased, a greater fraction of particles reach the 
overflow because of the reduction in the suspension holdup time in the settler. For the higher aspect 
ratio, the theory curve passes through the 90% confidence intervals for all data, whereas half of 
the data points for the lower aspect ratio are above the theory curve at the 90% confidence level. 
A variance in particle settling velocities due to interactions may have contributed to this, although 
the mechanisms giving rise to this variance are not well-understood at present, even for vertical 
settlers (Koch & Shaqfeh 1989). For a given dimensionless overflow rate, the fraction of particles 
reaching the overflow increases with increasing aspect ratio; this is because the average settling 
velocity relative to that of an equal volume sphere decreases with increasing aspect ratio (Davis 
1991). The data confirm this prediction, although the difference for the two aspect ratios is 
statistically significant at only 65% confidence. 

A typical video frame for an experiment with the shorter particles is shown in figure 13. The 
orientation angle ~bz between the projection of the particle axis onto the plane of shear (i.e. the plane 
of the photograph in figure 13) and the velocity gradient (i.e. the direction normal to the inclined 
walls, or the x2-axis shown in figure 1) was measured for each particle. The cumulative distribution 
function, F(q~), defined as the fraction of particles having orientation angles <~bz, is shown in 
figure 14. Most of the particles have values of ~b~ close to 90 °, which is consistent with Jeffery-orbit 
theory in which the particles are predicted to spend more time aligned with the flow than transverse 
to it. The theoretical curve in figure 14 is the cumulative distribution function given by Anczurowski 
& Mason (1967): 

1 tan-,  ( tan  ~bz'), F(~b~) = ~ \ - - ~  / [30] 

where re is the effective aspect ratio of the particles. This orientation distribution corresponds to 
the Eisenschitz distribution in which particles with random initial orientation are assumed to move 
in undisturbed Jeffery orbits. The effective aspect ratios are r e = 5.02 for r = 6.25 and re = 13.2 for 
r = 19.2 (Davis 1991). For the longer particles, visual observation showed that almost all of the 
particles were nearly aligned in the direction of flow, as predicted by the theory. 

Finally, we note that the theory described in section 2 and 3 is based on the orbit-averaged 
sedimentation velocity, and so an implicit assumption is that the settler is sufficiently long that the 
particles undergo several rotations before settling out of suspension. The period of rotation is given 
by [1]. The characteristic shear rate is the average velocity divided by the channel half-height: 

= 2Qo/(whZ).  On the other hand, the holdup time is the settler volume divided by the flowrate: 
Th = w h L / Q o .  An estimate of the number of rotations is then the ratio of the holdup time to the 
characteristic period of rotation: 

N Th L 
T - lth(re + r e - l )  " [31] 

For the particles with r = 6.25 (re= 5.02), N = 1.5, whereas for the particles with r = 19.2 
(G = 13.2), N = 0.6. Thus, the particles did not undergo several rotations, and this was confirmed 
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by observing the motion of individual particles. However, upon entering the settler, the particles 
were observed to quickly align with the flow direction and then to rotate slowly until they became 
unaligned (whereupon they quickly became realigned, consistent with Jeffery-orbit theory). Since 
the difference between the orbit-averaged settling velocity and that of particles aligned with the flow 
is only a few percent for particles of the aspect ratios employed (Davis 1991), the insufficient holdup 
time for several particle rotations is not a significant factor. 

5. CONCLUDING REMARKS 

The degree of nonsphericity of a particle has a large effect on its settling behavior. In this work, 
the effects have been quantified for axisymmetric spheriods, cylinders and discs undergoing Jeffery 
orbits as they settle in an inclined settler. Suspensions of particles that deviate from spherical shapes 
exhibit the expected behavior of slower setting and, because of this, appear in the overflow at 
volumetric overflow rates lower than that required for spherical particles to appear. A size 
classification of nonspherical particles is more difficult than for spherical particles because of varied 
settling rates of identical particles that are in different orbits. Classification may also be more 
time-consuming for highly nonspherical particles due to their slower settling velocities. A negligible 
dependence on the assumed distribution of orbit constants is found for both spheriods and 
cylinders. Monodisperse suspension of oblate spheroids exhibit a much larger variation in 
orbit-averaged settling rates than do suspensions of prolate spheroids, due to larger variations in 
the orbit-averaged sedimentation mobility, ~22, for oblate spheroids with various orbits. For prolate 
spheroids, ~22 does not deviate far from b± over the full range of orbit constants. 

Experiments with cylinderical fibers are in reasonable agreement with the theory for the 
concentration of particles reaching the overflow. Visual observations of the orientation distribution 
of the cylindrical particles substantiate the use of the Eisenchitz distribution and indicate that most 
particles align with the flow direction. 
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